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STRUCTURE OF FLOW 
GRANULAR LAYER 

U. Dalabaev 

THROUGH AN IMMOVABLE 

UDC 532.529 

A solution of  the problem o / f l ow  through an immovable granular layer is presented. 

In view of the fact that filtration of a gas or a liquid in a granular layer provides a basis for various processes 

of chemical technology, a number of works have been devoted to investigations of the flow structure [1-7 ]. For 

example, in [3 ], the emergence of a strong inhomogeneity of the velocity field behind a granular layer was found 

experimentally, which was explained by the inhomogenoous stressed state of the layer. In the same work, an 

analytical solution of the problem of motion of an ideal fluid through a porous medium with a curvilinear boundary 

within the framework of the model of a "quasi-ideal" fluid was presented. The solution revealed an inhomogeneity 
in the velocity profile behind the granular layer with the maximum value observed on the wall. In [8 ], with the 

use of the electrodiffusion method, velocity profiles were measured not only behind the layer but also in the layer 

itself. The effect of the shape of the granular layer on the flow structure behind the layer has also been studied. 

In this case, an inhomogeneous velocity profile behind the layer has been revealed. The description of flow through 

a granular layer is based on the interpenetration model [9-11 ]. If one assumes within the framework of a two- 

velocity model that: 1) the discrete phase is immovable, 2) deformation of the discrete phase can be neglected, 3) 

heat and mass transfer between the phases does not take place, and 4) the flow is incompressible, then the equations 

of motion in dimensionless Cartesian coordinates are as follows: 

eUk Ox k Re Ox] + ~ 6~ + 1 ~ e Oxt ) + 

Oeu~ _ O ,  (2) 
dx k 

where Re = pUh/l~ and D = ~-dh/d.  

Summation over the index k is assumed in Eqs. (1) and (2). Of the interaction forces [11 ], Eq. (1) accounts 

for only the Stokes loss as applied to the flow through a porous layer in Ergan's form [3, 7 ], with a being the 

experimentally determined proportionality coefficient (for porous media consisting of spheres, a -  150). The 

dimensionless variables are related to the dimensional in the following manner: 

Xk ui Re..p'__ 
Xk = - - ,  u i -  , p =  U 2 �9 h U p 

It should be noted that if we assume that e -~ 1 in Eqs. (1)-(2), we arrive at the Navier-Stokes equation. 

After corresponding simplifications, Eq. (1) transforms into the Darcy equations. 
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Equations (1) and (2) describe the flow motion not only within the porous layer  but  also outside it (at e .. 

1) and thus make it possible to s tudy conjugate problems outside and within the layer  in a uniform manner .  

To solve Eqs. (1) and (2) numerically under  the corresponding boundary  conditions, we used the SIMPLE 

algorithm developed for the Nav ie r -S tokes  equation with the corresponding generalizations [12 ]. 

We investigate a flat channel  with a granular  layer.  Let us direct the x I axis along the channel  axis, and 

x 2 in the perpendicular  direction. A symmetrical  velocity profile is preset at the entrance of the channel ,  which 

makes it possible to solve the problem only in the upper portion of the channel.  

Thus ,  Eqs. (1)-(2) are considered in the region 0 < xl < L, 0 < x2 < 0.5. 

Let a region of the channel,  say Xleft < Xl -< Xright(X2), 0 _< X 2 _< 0.5, be filled with a granular  medium. 

Now we formulate  the boundary  conditions. The  conditions of flow symmet ry  

Ou I 
x 2 = 0 ,  Ox 2 - 0 ,  u 2 = 0 .  

are set up on the channel  axis.  Stick boundary condit ions  are a s sumed  to be satisfied on the portion of  the channel  

wall which is frcc of  the granular medium,  i.e., x2 - 0.5 and Ul - u2 - 0 for 0 < Xl ~ Xleft, xright(0.5) < Xl < L, 

and  on the boundary  which is in contact with the granular medium,  i.e., when  Xleft < Xl -< xright, we  have: 

Ou 1 
x z=O, ~=0, u 2=0. (3) 

It should be noted that assuming a stick boundary  condition on the boundary  of the porous medium is not 

quite correct for averaged equations such as Eqs. (1) and (2), since the outer  walls do not differ  from the inner  

ones, for which the stick boundary  condition is not satisfied. By the same reasoning, a slip boundary  condition (3) 

is assumed for the longitudinal velocity instead of a stick boundary  condition. 

The  following conditions are set up at the entrance of the channel  (0 < x2 < 0.5): 

Ou 2 
x I = O, u I = ~ (x2) , ~Xl = O, p = Po" 

At a reasonable  distance from the granular  medium, a weak condition is set up: 

Ou I Ou 2 
X = L ,  . . . .  O.  

Ox I Ox I 

In simulations, we used an inhomogeneous 40 x 10 grid and assumed that L -- 3 and D = 100. In the 

vicinity of the en t rance  to and  exit  from the layer  we used a f iner  grid, then nodes obeying  the  law hi = 

h i - l ( l  + ~)i were used, and nodes with a higher density at the wall were used along the x2 axis. 

We considered several variants of the granular  layer  layout. The  porosity of the granular  layer  was assumed 

to be constant and was taken in calculations to equal 0.4. 

In order  to investigate the effect of the shape of the granular  layer,  we carried out calculations with three 

variants of filling of the fiat channel:  in the first variant the granular  layer  is situated in the region 0 < Xl < 1, 

0 _< x 2 < 0.5, in the second variant the right boundary  of the granular  medium is convex, i.e., has the shape Xright 

= 1.06 - 0.24x[ (i.e., the bend of the right boundary  is 6% of the channel size), and in the third variant  the right 

surface is concave, i.e., Xright = 1 + 0.24x 2. In all the three variants a uniform velocity profile and PO = 10s were at 

the input. Calculations were carried out at Re = 1, 10, and 100. Figure la shows longitudinal velocity profiles behind 

the layer in the cross section xl = 1.07 (Re = 100); the numbers  at the curves correspond to the number  of the 

variant. The  considerable effect of the shape of the right boundary  of the layer  on the velocity distr ibution behind 

the layer is evident from the figure. Sharp maxima near  the channel  walls and the minimum on its axis observed 

in the second variant appear  at all the Reynolds numbers  under  consideration, and an increase in the value of Re 
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Fig. 1. Changes in longitudinal (a) and transverse (b) velocities for different 

shapes of the porous layer at the cross section xl = 1.07, Re -- 100. 

~ / / / / / / . / / / / /  . . . . ; . . / . . - / / . . . / ,  . . . . / / r  

' z'5 j . T "  0 0,5 1.0 

Fig. 2. Evolution of the velocity profile over the entire channel in the case 
when the channel region 0.9 _< Xl -< 1.03 - 0.12x~, 0 -< x 2 -< 0.5 is f i l led 

with the granular medium (Re = 10). 

leads to an increase in the ratio Ulmax/Ulmin. Thus, e.g., at Re = 10 we have/glmax/Ulmin = 1.46, and at Re = 100 

the ratio equals 1.55. 

Figure lb  presents changes in the transverse velocity at the cross section x] = 1.07 at Re = 100 for the three 
variants of the layout of the granular layer, which demonstrates the considerable effect of the shape of the right 

boundary of the granular layer. 

We also investigated the effect of the shape of the granular medium on the flow structure not only behind, 

but also in front of the layer. To do this, we assumed in the calculations that the granular layer f i l ls the flat channel 

in the region 0.9 _< x] _< Xright(X2). At the entrance of the channel we set up a parabolic distr ibution law of the 
longitudinal velocity. In this case we observed exactly the same pattern behind the layer as in the three above- 

considered variants of the shape of the right boundary of the porous region. Inhomogeneity of the velocity profile 

is observed not only behind, but also in front of the layer. 

Figure 2 presents the evolution of the velocity profile over the entire channel and several cross sections in 

the case when the right boundary of the layer i s  Xr igh t (X2)  = 1.03 - 0.12x 2. The velocity maximum in the vicinity 

of the wall is observed not only behind the layer, but also in the layer itself. 

Thus, the geometrical shape of the exit boundary of a porous medium affects substantially the flow 

structure; it is one of the main reasons for the emergence of "ears" in the boundary region not only behind, but 

also in front of the layer. In this case the maximum value of the longitudinal velocity behind the layer takes place 
in the vicinity of the wall, and not on the wall itself, as in [3 ]. It should be noted that the revealed emergence of 

the "ears" is similar to experimental data [8 ], which results from taking into account viscosity terms in equations 

of motion. 

N O T A T I O N  

xl, x2, dimensionless Cartesian coordinates; xl, x~, dimensional coordinates; ul, u2, dimensionless 

velocities; ul, u~, dimensional coordinates; p, p', dimensionless and dimensional pressures; p, flow density; U, 

volume-averaged velocity; h, channel width; d, characteristic size of granular medium; Re, Reynolds number; e, 

porosity of granular medium; D, dimensionless number; a,  proportionality coefficient; L, dimensionless channel 

length; Xleft , Xright  , left and right boundaries of granular medium (dimensionless); ttlmin , Ulmax , minimum and 
maximum values of the dimensionless longitudinal velocity over the cross section; hi, grid spacing. 
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